If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-51.96t-200=0
a = 4.9; b = -51.96; c = -200;
Δ = b2-4ac
Δ = -51.962-4·4.9·(-200)
Δ = 6619.8416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51.96)-\sqrt{6619.8416}}{2*4.9}=\frac{51.96-\sqrt{6619.8416}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51.96)+\sqrt{6619.8416}}{2*4.9}=\frac{51.96+\sqrt{6619.8416}}{9.8} $
| 2e+3=7e-2 | | 2n-3|5=5 | | )5n+7=7n+1 | | 3x–7=x+11 | | 7=2/4x | | 4(3w+5÷4+2)-3=5w | | x-1=0.98x | | 2x-x+(17+3x)=60+2x | | 100-0.02x=0.98x | | 13+6x-5=-2x+4x+32 | | 3+7h-18=h-15 | | F(2)=8-2x | | 2x+125+55=180 | | 15c-14-8c+2=51 | | 37=-3=5(x+6) | | (3n-1)^2=12n+8 | | 2x=294 | | 7-(3x+5)=x+30 | | 16+y=7y-104 | | 2/3x+3/5=7/5 | | X^3-10x^2+3x+20=0 | | 8x-4=12+x | | 0,9x^2+1,8x=2,7 | | 5x10^4xx=5x10^4+500x | | x+10/5=x/4 | | M+3=m-7 | | 7x+6=4x-5x | | 10.35-m=3.46 | | 3x-10=x+50 | | 2x^2-20x=22 | | 3x-10=2x(x-2) | | 2x+^2+2x=-1x+20 |